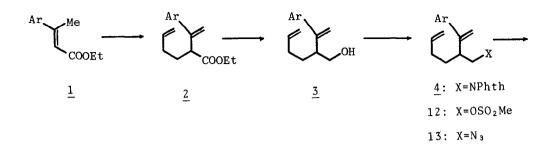
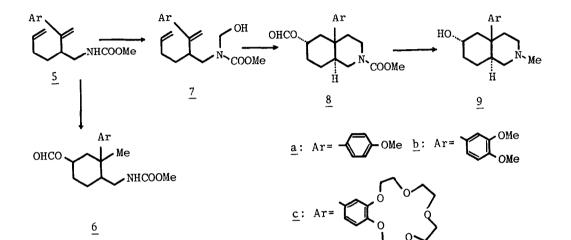
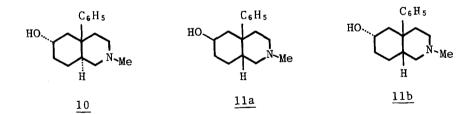

AN EFFICIENT DIASTEREOSELECTIVE SYNTHESIS OF 6-HYDROXY-4a-[3,4-CROWNED(15-CROWN-5)PHENYL]-trans-DECAHYDROISOQUINOLINE

Shinzo Kano,^{*} Tsutomu Yokomatsu, Hajime Nemoto, and Shiroshi Shibuya Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan


A high diastereoselective synthesis of 6-hydroxy-4a-aryl-<u>trans</u>decahydroisoquinoline derivatives was achieved by an application of N-acyliminium ion-induced polyene cyclization procedure.


The field of biomimetic polyene cyclization has been used to a synthesis of complex multicyclic compounds with excellent stereochemical control.^{1,2} Allyl alcohols, epoxides, acetals, or sulfonates have been used as suitable cationic initiators for successful polyene cyclizations. The use of N-acyliminium ions has been found to achieve remarkable stereocontrol synthesis of N-polycyclic compounds.³ We have investigated a diastereoselective synthesis of 6-hydroxy-4a-aryl-<u>trans</u>-decahydroisoquinoline ring system,^{3d} a key structural variant of morphine molecule, by using N-acyliminium ion as a cationic initiator. The search for potent analgesics based on the morphine ring system has been an area of considerable interest for many years⁴ and new structural variants in this field are still required in the hope of finding significant analgesics without undesired side effects. Introduction of crown ether system might serve as a new type of ligand for elucidation of the mechanism of opiate.⁵ From these points of view, We planned a synthesis of the title compound. Our synthetic strategy is based on the trans-fusion controlled ring closure of polyene-N-acyliminium ion system (Eq. 1).



At the first stage, we describe a synthesis of 4a-(4-methoxyphenyl)- and 4a-(3,4-dimethoxyphenyl)-<u>trans</u>-decahydroisoquinolines.

 α -Butenylation of the esters <u>la,b</u> (LDA, 1-iodo-3-butene, THF, -78°C \longrightarrow room temperature) gave the corresponding esters <u>2a</u>⁶ (80 %) and <u>2b</u> (70 %), respectively. Reduction of <u>2a,b</u> (LiAlH₄, Et₂O, 0°C, 2 h) gave the alcohols <u>3a,b</u> which were condensed with phthalimide by Mitsunobu's method⁷ to give the corresponding N-substituted phthalimide <u>4a</u> (82 %, mp 70-71°C) and <u>4b</u> (80 %, mp 82-83°C), respectively. Decomposition of <u>4a,b</u> (NH₂NH₂·H₂O, work up), followed by methoxy-

pared by starting from the ester <u>1</u> $(Ar=C_6H_5)$ according to the same procedure as above and compared with the known <u>cis</u>-fused two epimeric isomers <u>11a,b</u>.⁹ The characteristic physical data of <u>10</u> were considerably different from those of <u>11a,b</u> appeared in the literature. Therefore, the ring-juncture of 4a-phenyldecahydroisoquinolines obtained by this method was assigned as trans rather than cis. The equatorial configuration of the hydroxyl group at 6-position was also easily deduced from the magnitude of the coupling constants for C-6 proton bearing oxygen function, which was clearly visible in their ¹H-NMR spectra. The signals were broadened ($\underline{W}_{1/2}$ = 30 Hz) by large diaxial coupling interactions. In the case of axial-oriented isomers, half-band width of equatorial 6-H should be in the range of around 15 Hz because of the smaller proton-proton coupling constants from the Karplus relation.¹⁰ Thus, the ring-closure was found to proceed with high diastereoselectivity.

The method was successively applied to a synthesis of 4a-[3,4-crowned(15-crown-5)pheny1] analog $\underline{9c}$ starting from 3,4-crowned(15-crown-5)acetophenone.¹¹ Wittig reaction of 3,4-crowned(15-crown-5)acetophenone [(EtO)₂POCH₂COOEt, NaH, DMF, 60°C] gave the ester $\underline{1c}$ (52 %, mp 63-65°C). α -Butenylation of $\underline{1c}$ (LDA, 1iodo-3-butene, THF, -78°C \longrightarrow room temperature) yielded the ester $\underline{2c}$ (86 %), reduction of which (LiAlH₄, Et₂O, 0°C, 2 h) gave the alcohol $\underline{3c}$. Since conversion of $\underline{3c}$ to the corresponding amine leading to $\underline{5c}$ by Mitsunobu's method was not successful, a preparation of $\underline{5c}$ was carried out through the following procedure. Methansulfonate $\underline{12}$, derived from $\underline{3c}$, was treated with NaN₃ (DMF, 70°C, 4 h) to give the azide $\underline{13}$ (60 %), IR (neat) 2045 cm⁻¹. Reduction of $\underline{13}$ (LiAlH₄, THF), followed by methoxycarbonylation gave $\underline{5c}$ (54 % from $\underline{12}$). Hydroxymethylation of $\underline{5c}$ (CsCO₃, Paraformaldehyde, THF) afforded $\underline{7c}$, which was treated with formic acid to give the desired 4a-crowned-phenyl isoquinoline $\underline{8c}^6$ (59 %, mp 132-134°C). Reduction of $\underline{8c}$ (LiAlH₄, THF) afforded $\underline{9c}$ (80 %), δ 2.06 (NCH₃).

References and Notes

- Reviews on polyene cyclization: (a) W. S. Johnson, <u>Acc. Chem. Res.</u>, <u>1</u>, 1 (1968). (b) E. E. van Tamelen, <u>Acc. Chem. Res</u>., <u>8</u>, 152 (1975). (c) W. S. Johnson, Bioorg. Chem., <u>5</u>, 51 (1976). (d) P. A. Bartlett, In "<u>Asymmetric Synthesis</u>, Vol. 3" Ed. by J. D. Morrison; Academic Press Inc., <u>1984</u>, pp 341-409.
- 2. (a) M. B. Groen and F. G. Zeelen, <u>J. Org. Chem</u>., <u>43</u>, 1961 (1978). (b) J. A.

M. Peters, T. A. P. Posthums, N. P. van Vliet, F. J. Zeelen, and W. S. Johnson, <u>J. Org. Chem</u>., <u>45</u>, 2208 (1980). (c) W. S. Johnson, D. Brener, D. J. Dumas, P. J. R. Nederlof, and J. Welch, <u>J. Am. Chem. Soc</u>., <u>104</u>, 3508 (1982), and references cited therein.

- 3. (a) For review: W. N. Speckamp, <u>Recl. Trav. Chim. Pays-Bas</u>, <u>100</u>, 345 (1981).
 (b) D. J. Hart and K. Kanai, <u>J. Am. Chem. Soc.</u>, <u>105</u>, 1255 (1982). (c) A. R. Chamberlin and J. Y. L. Chung, <u>J. Am. Chem. Soc.</u>, <u>105</u>, 3653 (1983), and references cited therein. (d) S. Kano, T. Yokomatsu, Y. Yuasa, and S. Shibuya, <u>Tetrahedron Lett.</u>, <u>24</u>, 1813 (1983).
- 4. M. R. Johnson and G. M. Michne, In "<u>Medicinal Chemistry</u>, 4th Ed", Ed. by M. E. Wolff; Wiley Interscience, New York, <u>1981</u>, Part III, pp 699.
- 5. I. Fujii, K. Hayasakam and K. Kanematsu, <u>Tetrahedron Lett.</u>, <u>25</u>, 3335 (1984), and references cited therein.
- 6. All new compounds gave satisfactory microanalyses, IR, 1 H-NMR (90 MHz), and Mass spectral data. Analytical data for some of them were obtained by high resolution mass spectra. Selected spectral data are as follows. 8a: ¹H-NMR (CDCl_z) & 7.97 (1H, s), 7.33 (2H, d, J=9 Hz), 6.92 (2H, d, J=9 Hz), 5.10 (1H, m, $W_{1/2}$ = 25 Hz), 3.80 (3H, s), 3.66 (3H, s), 3.00 (1H, dd, J= 2 and 12 Hz), 2.73 (1H, d with small spliting, J=12 Hz), 2.43-1.23 (11H, m), MS m/e 347 (M⁺). 8b: ¹H-NMR (CDC1_z) & 7.93 (1H, s), 6.94 (3H, s), 5.11 (1H, m, $W_{1/2}$ = 30 Hz), 3.90 (6H, s), 3.68 (3H, s), 3.04 (1H, dd, J=3 and 12 Hz), 2.78 (1H, d with small spliting, J=12 Hz), 2.48-1.14 (11H, m), MS m/e 377 (M⁺). <u>9a</u>: ¹H-NMR (CDC1_z) & 7.35 (2H, d, <u>J</u>=9 Hz), 6.93 (2H, d, <u>J</u>=9 Hz), 3.66-4.12 (1H, m), 3.82 (3H, s), 2.10 (3H, s), MS m/e 275 (M⁺). <u>9b</u>: ¹H-NMR (CDC1₃) & 6.90 (3H, broad s), 3.86 (6H, s), 3.57-3.97 (1H, m), 2.09 (3H, s), MS $\underline{m}/\underline{e}$ 305 (M⁺). <u>8c</u>: ¹H-NMR (CDC1₃) & 7.91 (1H, s), 6.86 (3H, broad s), 5.07 $(1H, m, W_{1/2} = 30 Hz), 4.20-4.03 (4H, m), 3.97-3.78 (4H, m), 3.70 (8H, s),$ 3.59 (3H, s), 2.99 (1H, dd, J=2 and 13 Hz), 2.70 (1H, broad d, J=13 Hz), 2.40-1.20 (11H, m).
- 7. O. Mitsunobu, M. Wada, and T. Sano, J. Am. Chem. Soc., 94, 679 (1972).
- A. R. Gobao, M. L. Bremmer, and S. M. Weinreb, <u>J. Am. Chem. Soc.</u>, <u>104</u>, 7065 (1982).
- 9. N. Finch, L. B. Blanchard, R. T. Puckett, and L. H. Werner, J. Org. Chem., 39, 1118 (1974).
- L. M. Jackman and S. Sternhell, "Application of NMR Spectroscopy in Organic Chemistry", 2nd ed., Pergamon Press, Oxford, 1969, Chapter 4-2, pp 280.
- 11. S. Kopolow, T. E. H. Esch, and J. Smild, Macromolecules, 6, 133 (1973).

(Received in Japan 1 December 1984)